Magnetic Properties of Ni-doped ZnO Nanocombs by CVD Approach

نویسندگان

  • Zhou ShaoMin
  • Yuan HongLei
  • Liu LiSheng
  • Chen XiLiang
  • Lou ShiYun
  • Hao YaoMing
  • Yuan RuiJian
  • Li Ning
چکیده

The search for above room temperature ferromagnetism in dilute magnetic semiconductors has been intense in recent year. Arrays of perpendicular ferromagnetic nanowire/rods have recently attracted considerable interest for their potential use in many areas of advanced nanotechnology. We report a simple low-temperature chemical vapor deposition (CVD) to create self-assembled comb-like Ni-/undoped ZnO nanostructure arrays. The phases, compositions, and physical properties of the studied samples were analyzed by different techniques, including high-resolution X-ray diffraction/photoelectron spectroscopy/transmission electron microscopy, photoluminescence, and MPMS. In particular, the Ni-doped ZnO nanocombs (NCs) with ferromagnetic and superparamagnetic properties have been observed whereas undoped ZnO NCs disappear. The corresponding ferromagnetic source mechanism is discussed, in which defects such as O vacancies would play an important role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

Effect of Morphology on the Photocatalytic Behavior of ZnO Nanostructures: Low Temperature Sonochemical Synthesis of Ni Doped ZnO Nanoparticles

In the present study, ZnO nanostructure has been synthesized by different methods, namely coprecipitation, hydrothermal and sonochemical methods. After comparison of the morphology and photocatalytic activity of ZnO samples prepared via different methods, the best method (sonochemical method) was used for synthesis of Ni-ZnO nanoparticles with different concentrations of nickel. Furthermore, st...

متن کامل

The Effect of Different Dopants (Cr, Mn, ‎Fe, Co, Cu and Ni) on Photocatalytic ‎Properties of ZnO Nanostructures

   ZnO structures with different dopants (1mol% Cr, Mn, Fe, Co, Cu and Ni) have been synthesized via a simple hydrothermal method using sucrose as a template. These doped ZnO nanostructures characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The photocatalytic property of these synthesized materials was studied by a pho...

متن کامل

Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

Dye-sensitized solar cells (DSSCs) were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO) via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%,...

متن کامل

Ni doped ZnO thin films for diluted magnetic semiconductor materials

Ni doped ZnO (Zn1 xNixO) thin films were grown on quartz substrates via magnetron sputtering deposition process with the Ni concentrations of 5, 10 and 20 at.% in the films. The effects of Ni doping level and post annealing on the structural and magnetic properties of Zn1 xNixO films were investigated by means of X-ray diffraction (XRD), alternating gradient magnetometer (AGM) and photoluminesc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010